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A formalism has been worked out which allows to transform any non- 
punctiform segment-segment potential of isolated polymer segments e of fairly 
short-ranged character into the pair-potential U operating between linear polymer 
chains with a certain reference to the arguments as they have been originally put 
forward by Flory and Krigbaum. Although no restrictions are made in the 
derivation as to the repulsive or attractive contribution of  the segment-segment 
potential ~ because of some known general deficiencies of  the Flory-Krigbaum 
treatment for exclusively repulsive interaction, the resulting equations are 
primarily intended to describe the thermodynamic situation at and close to the 0- 
point where repulsion and attraction--though working at different ranges of 
segment separation---cancel. As the equation derived is somewhat complicated 
two different approximate forms have been developed: The first one is based on a 
Taylor series expansion retaining terms up to the fourth order which allows to 
characterize U by the second and the fourth moment of the pair segment-segment 
distribution function, /~ and 7 (P being the so-called binary cluster integral of 
segment-segment interaction, which is considered to be zero for 0-conditions). In 
this case U may be represented by an expression of the general form 

U/kT = A (1 - BR 2) exp { - bR2}. 

The second method is based on a separate integration over the repulsive and 
attractive ranges of e giving the repulsive (U+) and the attractive (U_) part of U 
finally after some approximations leading to an equation of the general form 

U/kT = (U+ + U_)/kT = A, exp { - bIR 2} - A 2 exp { - b2R2}. 
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*** Present address: OMV-Aktiengesellschaft, Raffinerie Schwechat, 
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In both cases the knowledge of the exact form of 8 is dispensable, only/3 and 7--or 
for the second case their repulsive (/~+ and ~+) and attractive (/3_ and 7-) parts 
have to be known. It is shown that the approximations are in excellent accordance 
with the exact form so that they may be conveniently used to describe pair 
potentials of polymer chains and to analyze pair potentials of segment-segment 
interactions under the limitations and conditions indicated. 

(Keywords: Polymer pair distribution function; Polymer pair potential; 
Thermodynamics and statistical mechanics of polymer solutions; Theta-systems) 

Ein allgemeiner Formalismus zur Ableitung des Paarpotentials zw&chen Polymer- 
ketten aus beliebigen Wechselwirkungspotentialen zwischen isolierten Segmenten 

am und nahe dem Theta~Punkt 

In gewisser Anlehnung an Vorstellung von Flory und Krigbaum wurde ein 
Formalismus entwickelt, der es erlaubt, beliebige nichtpunkf6rmige zwischen den 
isolierten Segmenten yon Polymerketten wirkenden Wechselwirkungspotentiale 
von einigermagen beschriinkter Reichweite in das zwischen Polymerketten 
herrschende Paarpotential U zu fiberffihren. Obwohl dabei hinsichtlich des 
abstol3enden und anziehenden Beitrags zu a keinerlei besondere Annahmen 
eingehen, ist die resultierende Gleichung in erster Linie zur Beschreibung der am 0- 
Punkt bzw. in dessen N~ihe vorliegenden Situation gedacht; der Grund daffir ist in 

• gewissen bekannten M/ingeln des Flory-Krigbaum-Konzepts bei der Beschreibung 
einer rein repulsiven Wechselwirkung zu suchen. Wegen der relativ komplizierten 
Form der ermittelten Gleichung ffir U wurden zur Erleichterung der praktisehen 
Handhabung zwei N~iherungsformen konzipiert: Die erste beruht auf einer 
Taylor-Entwicklung unter Beriicksichtigung der Terme bis zur vierten Ordnung, 
die eine Beschreibung von U durch das zweite und das vierte Moment der 
Segment-Segment-Paarverteilungsfunktion, /~ und 7 erlaubt (/3 ist dabei das 
sogenannte bin~ire Clusterintegral der Segment-Segment-Wechselwirkung, das 
unter 0-Bedingungen den Wert Null annimmt). In diesem Fall l~igt sich U durch 
einen Ausdruck der allgemeinen Form 

U/kT = A (1 - BR 2) exp { -- bR 2} 

darstellen. Die zweite Methode geht yon einer getrennten Integration fiber die 
abstogenden und anziehenden Bereiche yon e aus und liefert nach einigen 
Niiherungen den abstol3enden (U+) und den anziehenden (U_) Teil von U. Dabei 
entsteht eine Gleichung der allgemeinen Form 

U/kT= (U+ + U_)/kT= Alexp { -  bl R2} - Azexp { -  b2R2}. 

In beiden F~illen bedarf es keiner genauen Kenntnis von e; lediglich/3 und ~, bzw. 
im zweiten Fall deren abstoBende (/~+,~+) und anziehende (/?-,7-) Anteile 
mfigten bekannt sein. Es l/igt sich numeriscb zeigen, dab die beiden 
N~iherungsgleichungen nur geringffigig vonder exakten Gleichung abweichen, so 
dab sie unter den genannten Bedingungen in bequemer Weise sowohl zur 
Beschreibung der Paarpotentiale von Polymerketten als auch zur Analyse von 
Segment-Segment Wechselwirkungspotentialen herangezogen werden k6nnen. 
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Introduction 

For quite a long time apparently the best available way to describe the 
separation dependent interaction between two linear macromolecules 
has been the Flory-Krigbaum potential1' 2 UFX 

2( s g / 3 3 21 
~ -  - ',Vsolv/Vseg\4-~s2/ (1 - 2 z ) e x p [ -  ~ s 2 j  (1) 

Here n is the number of segments of each polymer molecule, s 2 its mean 
square radius of gyration, Vseg and Vsolv the volumes of a chain segment 
and a solvent molecule, respectively, R the separation between the centers 
of gravity of the two polymer molecules, and Z the Flory-Huggins 
interaction parameter. Eq. 1 also is often written with (1 - 0/T) instead of 
( 1 - 2 X )  where 0 is the so-called Flory 0-temperature. In other 
representations 3 gseg (1 - 2 Z) is substituted by a quantity/~ (the so-called 
binary cluster integral of segment-segment interaction) which may be 
considered to be the volume excluded by one isolated chain segment to any 
other one. 

If, for sake of simplicity, the factor Vscg/Vsolv which in real systems has 
to cater for an eventual difference in size between solvent molecules and 
polymer segments, is assumed to be unity, putting 3/4 s2= b, eq. 1 takes 
the form 

/b \3/2 
UFI~(R)/kT=n2fl{7J\ / e x p [ -  bR 2] (la) 

Eq. 1 implies that for 0-conditions (Z = 1/2, fi = 0, or T = 0) U should be 
zero for all intermolecular separations R. Numerical calculations, 
however, carried out with four way 4 and five way 5 cubic lattice Monte 
Carlo chains have revealed that this is clearly not the case, U actually being 
positive (repulsive) for small separations and negative (attractive) for 
longer ones, before asymptotically rising to zero for very large values of R. 
In an attempt to provide a tentative explanation for this behaviour it could 
be shown 6 that for a Gaussian chain the sites which are to be occupied by 
the segments of a second chain in order to give an attractive segment- 
segment interaction between segments of different chains actually have a 
broader distribution than those sites leading to a repulsive interaction. As 
a consequence the net pair potential between two polymer molecules in 
general may be well represented by the difference between two Gaussian 
functions rather than by the single one suggested by eq. 1 

U(R) H2 f [ 3  ",~3/2 ~_3R2~ [ 3  ~3/2 ~ 3R2~-~ 
k T -  V~4~i s2 )exp [_  4s2j-zqb~4~s, ,2)  exp L 4s,,2j j (2) 

94 N[onatshef~e fiir Chemic, Vol. 116/12 
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Here z is the maximum number of attractive contacts of energy q0 k T  one 
segment may form and s ''2 is the mean square radius of gyration of these 
attractive sites, where s ''2 should equal s2+ (62/2), 6 being the distance 
between the centers of the segments when forming such an attractive 
contact. 

As eq. 2 which has been found to be obeyed by Monte Carlo cubic 
lattice chains, at least in type, had been derived with some reference to the 
lattice models used in 4, 5 it seemed desirable to rederive eq. 2 (or an 
equivalent to it) in a new general way for a continuum model. 

Derivation of the Formalism 

According to the superposition principle frequently used in statistical 
mechanics the Boltzmann factor for the interaction between two linear 
macromolecules A and B, each consisting ofn  segments, exp [ - U/kT],  is 
given by 

i=n j=n 
e--U/kT= H E e-a/kT (3) 

i=1 j = l  

i.e., by the product of the Boltzmann factors characterizing the average 
pairwise interaction between any chain segment of chain A and any chain 
segment of chain B, e being the energy of the segment-segment interaction 
in any pair 0"- As we are interested in an average effective potential U 
(potential of mean force), however, we have to take care of averaging over 
all possible configurations. 

So we may proceed as follows: 

The probability density (averaged over all /) of finding a specific 
segment i of chain A at the location of some volume element dr, Gaussian 
behaviour of the overall segment distribution assumed, is given by 

\2rcs~j[3 "~3/2 exp L -  ~2s2J = F  3r'21 (a) 3/2 p(r') = / ~ /  e -a/2 (3a) 

r' being the distance between dv and the center of gravity of chain A. On 
the other hand we need the average probability density p (r") of finding a 
specific segment of a chain at some volume element dv' apart by a distance 
r from dr, averaged over all dr' fulfilling this condition. This, in 
correspondence to the derivation given earlier 6, is 

1 (a~ 1/2 
p (r") = 4 ~ r" r \ 5 /  {exp [ - a (r" - r) 2] - exp [ - a (r" + r)2]} (4) 
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with r" being the distance between the volume element dv under 
consideration and the center of gravity of the chain. Now we have to ask 
for the differential probability ~Pr that a segment i of chain A is at dv and 
simultaneously a segmentj of chain B is at a distance r around dr, when the 
centers of chains A and B are at a distance R. This will be given by 

~ Pr (r, R) = 4 rc p (r') p' (r", r) r 2 dr dv (5) 

where r" denotes the distance between dv and the center of mass of chain B 
(r', r", and R of course are not independent of each other, but are 
connected through the vector equation ~' = ~" + R). 

Using the same principles which have been successfully applied in the 
course of the numerical calculations 4' 5, averaging over the Boltzmann 
factors of all the ~ 6pr belonging to "interfering" configurations ( f=  exp 
[ -e ( r ) / kT] )  and the 1 - . I 6 p r  "non-interfering" configurations ( f=  1) 
yields 

27= (1 - ~6Pr)" 1 + ~6prexp [ - e(r)/kT] 

= 1 - ~6pr(1 - exp [ -  e(r)/kT]) 
(6) 

We may note that exp [ -  e (r)/kT] actually is the distribution function for 
a pair of isolated segments, with ~ (r) being the appropriate pair potential. 

Due to the short range character of e (r) it follows 
~Pr (1 - exp[ - e (r)/kT]) << 1. Thus we may approximate27by. 

f ~  exp [ - ~ 6 Pr (1 - e-~(r)/kr)] (6 a) 

In order to evaluate the Bohzmann factor characterizing the overall 
average interaction between segments i and j we have to take the product 
of all ]~ this means that after taking logarithms we shall obtain the 
corresponding average potential U o. by integrating over all volume 
elements dv 

/ ' zOO 

UotkT=4~  f ~ pP' r2( 1 - e-e(r)/kr)drdv (7) 
dv r=O 

As the two integration variables are independent of each other we are free 
to reverse the order of integrations. Carrying out the integration over dv 
separately yields 

{E o I 1} = ( a x ]  1/2 1 exp ~ ( R - r ) 2  - e x p  - ( R + r )  2 
~p(r')p'(r,r")dv \~-~] 4~rR  - -2 

- p" (r, R) (8) 

94*  
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As we have n segments in chain A and n segments in chain B the Boltzmann 
factor for the overall intermolecular interaction will be the product of n 2 
Boltzmann factors exp [ -  Uij/kT] so that 

e -  U/kr = (e -  gdkr)n2 

o r  

O9 

U/k r = n 2 Udk T = n 2 4 7c ~ p" (r, R) (1 - e -~(r)lkr) r 2 dr 
o 

oo 

=n2t~s2) -R J r t e x  p exp 3 

0 

• (1  - e - ~ ( r ) / k r )  d r  (9) 

oo 

\n ,]  R r {exp [ -  b (R - r) 2] - exp [ -  b (R + r)2]} 

0 

' (1 - e-"(r)/kr) dr 

Eq. 9 constitutes a perfect mathematical tool of transforming any pair 
potential of segment-segment interaction into the pair potential of 
interaction between two chain molecules, within the frame of the 
limitations imposed by the derivation• These limitations, however, are 
essentially the same as in the derivation of the FIory-Krigbaum potential, 
eq. 1. The most remarkable feature in eq. 9 is the appearance of 
4 rc ~ r 2 p" (r, R) (1 - exp [ - e/kT]) dr, an expression very similar to the 
binary cluster integral of the isolated segments, f l = 4 r c ~ r 2 ( 1 - e x p  
[ -  a/kT]) dr. It will be clear at once that this integral, due to the presence 
of p" (r, R) in the integrand, in no way can be zero in general for all 
intermolecular separations R even if the binary cluster integral of the free 
segments should be zero, provided only that e does not vanish for any 
value of r (ideal gas like behaviour of the free segments). It is thus 
confirmed that an expression as in eq. 1, consisting of one Gaussian 
function only, must be inappropriate in general for U(R)  at least for 0- 
conditions. 
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Development of Approximations 
In principle any reasonable expression for e (r) can be inserted into eq. 

9, e.g., square well or triangle potentials, even the use of more elaborated 
potentials (e.g., the 6,12-Lennar&Jones potential) should be possible. 
However, except for the simplest types of potentials no closed solutions of 
the integrals in eq. 9 are available so that usually refuge has to be taken in 
numerical methods in these cases. For must purposes a less complicated 
approach will be satisfactory: Assuming r << R, which due to the short 
range character of e (r) is well fulfilled except for very small separations 
(R ~ 0), where the distance between the centers of mass of the two chains 
is of the same order of magnitude as the segment diameter, expansion of 
the two potentials in eq. 9 into Taylor series around R, formally retaining 
terms up to the fourth order (all even order terms cancel), leads to 

0(3  k  n2( )lj2e-bR2{4bfr2 l-e-' Jk dr 
o 

o9 

0 

(10) 

Introducing the binary cluster integral fl as the integrated second 
moment of the segment-segment interaction and a quantity 

co 

= 4 rc S r4 (1 - e -~/kr) dr as the corresponding integrated fourth moment, 
0 

eq. 10 transforms into 

U/kT=n2(b)3/Ze-bRzfl_n2(b)3/Ze-bR2(b_~b2R2)7 

=n2(b/~z)3/2 e-bRZ(fl - (b -~b2 R2)7 ) 
(11) 

Comparison shows that the first part of the rhs of eq. 11 is identical with 
the FIory-Krigbaum equation in its version ofeq. 1 a which actually would 
correspond to taking into account terms up to the second order only in the 
Taylor series expansion ofeq. 9. Apparently, it is the second part of the rhs 
of eq. 11 originating from the third order terms which--according to its 
dependence on R--causes eq. 1 a to fail for 0-conditions. If the positive 
and negative parts of e compensate each other so that fl = 0 (which along 
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with our experience will characterize conditions very close to 0- 
conditions), then, because repulsion between segments exceeds attraction 
for small distances r, due to the presence of r 4 in the integrand (instead of r 2 
for fl) ~ must be negative. Therefore, the potential U/kT given by eqs. 10 
(or 11) will be positive (repulsive) for R2<  3/(2b)= 2s 2 and negative 
(attractive) at higher separations. This is indeed in close agreement with 
Monte Carlo calculations carried out for isolated pairs of model chains 4. 
Thus, the conclusions drawn at the top of this paragraph are confirmed in 
a most instructive manner. 

The expression for U/kT given by eqs. 9-11 represent the combined 
action of attraction and repulsion. For some purposes it may be more 
convenient to consider the potentials for repulsion (U+) 
and attraction (U_) separately (U = U+ + U_). The integrand in eq. 9 is 
seen to assume positive or negative values depending on whether e is 
repulsive (positive) or attractive (negative) at the specified intersegment 
distance r under consideration (the expression within braces always being 
>~ 0). As a repulsive interaction between the macromolecules can originate 
from a repulsive interaction of segments only (overall attraction and 
segment-segment attraction will be connected in a similar way) this 
suggests to split U into a repulsive part (U+) and an attractive one (U_), 
just by carrying out the integration separately for this range where the 
integrand is positive and that where it is negative• As e will be positive for 
small r and eventually becomes negative in case of additional attractive 
interaction between the segments at higher separations, so that the sign of 
a, if at all, changes only once, it will be sufficient to integrate from r = 0 up 
to that point where a turns from positive to negative (r0) for obtaining U+, 
the rest of the integration (from r 0 to infinity) giving U_. 

r o 

U+/kT = n 2 (b) '/2 1 Ir {exp [-- b (R - r) 2] - exp [ -  b (R + r)23} 

0 

• (1 -- e -~/kr) dr 
(12a) 

co 

/b '~  1/2 1 [" 
U_/kT--n2~7 ) ~ J r {exp[ -b (R- r )  2] - e x p [ - b ( R  -~- r)2~} 

r 0 

• (1 - e -e/kr) dr 
(12b) 

Certainly, similar limitations as for eq. 9 will apply to the direct 
integrability of eqs. 12a and 12b. In a fully analogous fashion, however, 
also the approximate expression for U/kT, eq. 10 or 11 can be subjected to 



Pair Potential of Polymer Chains 1403 

the procedure of evaluating the integrals separately for positive and 
negative e. Introducing the quantities 

fl+ = 4rc~r2(1 -- e-~/k:r) d r 
o 

00 

fl_ = 4re 5 r2(1 - e-~/kr)dr 
r 0 

t'0 

7+ = 4 rc 5 r 4 (1 - e -e/~r) dr 
0 

oo 

7-  = 4 ~  5 r4(1 -- e-~/kT) dr 
r 0 

we obtain 

U+/kT=n2(b)3/2e-bR2{fl+- 7 + b ( 1 - ~ b R 2 ) }  (13a) 

U-/kT= n2(b)3/2e-bR2 {fl - -  7- b ( 1 - - 2  bR2)}3 (13b) 

Defining the average squares of the segment-segment separations, r+ 2 and 
r_ z, at which repulsive and attractive segment-segment interaction takes 
place, respectively, 

r +  2 = 7 +/fl + r -2  = 7 - / ~ -  

eqs. 13a, b take the form 

g+/kT=n2(b)3/ee-bR2fi+{1-r+2b(1-~bR2)} (14a) 

U_/kT=n2(b)3/2e-bR2fi_{1-r_2b(1-~bR2)} (14b) 

Under the conditions br< 2 << 1 (corresponding to r+ 2 << s_2), and br_ 2 << 1 
(corresponding to r_2<< s2), which due to the short range character of  
segment-segment interaction are fulfilled in all cases (except for very short 
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chain lengths) these eqs. 14a, b can be transformed into 

f 3 '~ 3/2 
U+/kT= n2 fi+ \4~s+2j  exp [ -  3 R2/4s+ 2] =--/,/2 fl+ (b+/rc)3/2ex p [ _  b+R 2] 

(lSa) 

/ 3 ,,3/2 
U_/kT= n2 fi_ ( 4 - - ~  2 s  2} exp [ -  3R2/4s_ 2"] -= n2 fi_ (b_/Tr)3/2exp [ -  b_R 2"] 
. \ r c s_ /  

(15b) 

[b+ -= 3/(4s+2); b_ - 3/(4s_2)] 

were s+ 2 = s 2 + r+2/2 and s_ 2 = s 2 + r_2/2. 

In combined form, eqs. 15 will correspond to an overall potential 
U ( =  U+ + U_) composed of two exponentials 

U/kr=/'/2 7c-3/2 {fl+ b+3/2 exp [ - b+R 2] - fl_ b_3/2 exp [ -  b_R2]} 
(16) 

as it has been proposed earlier in form of eq. 2 which has been shown to 
furnish an excellent description of the pair potential operating within a 
pair of model lattice chains 4. 

At the first sight it may be surprising that quite the same 
approximations lead to the mathematically different expressions ofeqs. 11 
and 16 which both claim to be adequate representations of U/kT. Apart 
from the fact that the two types of equations may be easily interconverted 
for not too large values of R (depending on whether the second term of the 
expression within braces of eqs. 13 or 14 is absorbed into the exponential 
as in eq. 15 or not) the difference is mainly a matter of the view which is 
taken of the problem: If  it is preferred to have the contributions of segment 
repulsion and segment attraction to the overall potential U/kT clearly 
separated from each other then eq. 16 will be the better representation. If, 
on the other side, special emphasis is laid on the non-punctiform character 
of the segment-segment interaction eq. 11 will be the more instructive 
version. In any case, eq. 11 provides an interesting and new basis of testing 
pair potentials of chain molecules. 

Tests of the Equations and Approximations 

a) Model and Basic Data 
In correspondence with calculations to be carried out for off-lattice 

chains 7 the following square-well potential has been chosen for the 
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segment-segment  in teract ion (Fig. 1) with r 0 being the " b o n d  length"  
(twice the radius of  the "ha rd - sphe re"  pa r t  o f  the segments): e = oo for  
0 <<. r/r o < 1; e = (p for  1 ~ r/r o <~ 1.3. The  chains were considered as freely 
rota t ing chains consisting of  n = 50 segments  each with a bond  angle o f  
109°28 ' (s 2 = 2 (n - 1)r02/6 = 16.33 r02). The  cons tant  b = 0.75/s 2 therefore 
will have a numeric  value o f  0.04592 r0-2. With  this square well potent ia l  a 

E(r / k T  + ~  

1 

0 . . . . . . . . . . . .  

-0.607 

1.3 

L I 

2 3 
r / r  o 

Fig. 1. Schematic representation of the square well potential used in the model 
calculations 

value o f  cp = - 0.6073 is necessary to make  the binary cluster integral  o f  
segment-segment  interact ion/~ vanish according to 

co 

fl = 4To ~ r2(1 - e-"(r)/kr)dr =- 
0 

= (4 re/3) r03 + (41:/3) r03 (1 - e-~°) (1.33 - 1) =-- 0 

with/~+ = - / ~ _  = 4.189 r03. 

This is very close to the value of  ~o (q) = - 0.6066) which has been 
found  to bring the excluded v o l u m e  between chain molecules 

oo 

u = 4 ~ j R 2 (1 - e -~(R)/~r) dR  
0 

down to zero if U(R)  is calculated f rom (the exact) eq. 9 thus proving  the 
correctness o f  the impl icat ion t h a t - - a t  least in the f rame of  the concept  
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Table 1. Pair potential U/kT of model chains (n = 50) calculated according to 
(exact) eq. 9 and approximate eqs. 11 and 16 

R/r o U/k T U/k T U/k T 
eq. 9 eq.16 eq. 11 

0.00 0.64476 0.62671 0.67250 
1.00 0.59859 0.58234 0.62349 
2.00 0.47635 0.46472 0.49405 
3.00 0.31835 0.31222 0.32751 
4.00 0.16904 0.16742 0.17130 
5.00 0.05857 0.05949 0.05703 
6.00 --0.00457 -0 .00293  -0.00710 
7.00 --0.02899 -0.02769 -0.03091 
8.00 -0.03025 --0.02959 -0.03117 
9.00 -0.02221 --0.02205 --0.02241 

10.00 -0.01329 --0.01337 --0.01316 
11.00 -0.00681 --0.00694 --0.00662 
12.00 -0.00306 -0.00316 --0.00291 
13.00 --0.00122 --0.00127 --0.00113 
14.00 --0.00043 --0.00046 -0.00039 
15.00 --0.00014 --0.00015 -0 .00012 
16.00 -0.00004 -0 .00004 -0.00003 

adopted-- /3  = 0 produces a zero excluded volume u. Using ~0 = - 0.607 
the following values are calculated for y +, 7 - ,  and 7 

7+ = (4 ~/5)ro 5 = 2.51 ro 5 

7 -  = (4 rc/5)ro 5 (1.35 - 1) (1 - e -~°) = - 5.69 r05 
OO 

7 = 7+ + 7 -  = 4 rc ~ r 4 (1 - -  e -e(r)/kT) dr = - 3.18 r05. 
0 

b) Numeric and Graphic Tests 

Table 1 gives the results o f  the calculation o f  U/kT carried out  
according to (exact) eq. 9 (second column) the integrations being carried 
out  numerically. The results o f  the corresponding calculations for the 
approximate  forms, eq. 16 (difference o f  two exponentials) and eq. 11 
[single exponential  x (1 - c o n s t a n t .  R2)] are shown in columns 3 and 4. 
It  is seen that  the agreement is slightly better for eq. 16 but  satisfactory also 
for eq. 11. The point  where U passes f rom positive (repulsive) to negative 
(attractive) in all three cases is somewhat  below 6 r 0 [expected value 
(2 s2) 1/2 = 5.72 r01. The overall situation can be depicted most  conveniently 
f rom Fig. 2 where all the three functions are plotted vs. R/r o. As the 



Pair Potential of Polymer Chains 1407 

U/kT 

.B i . ~ .  , .o~ 

~", ----- ' I  ........................... O. 

.4  ~'", "' ,~ 
',, ",,~ -. 02 

• ',k 

O. 

, i , i , i , I i i , i , i , 1 , i , i , P , + , i , t , i 

0 2 4 6 8 10 12 14 

R/r o 

Fig. 2. Pair potential U/kT of freely rotating model chains as calculated by: exact 
eq. 9 - - ;  approximate eq. 11 . . . . . . . . . .  ; approximate eq. 16 

Table 2. Pair distribution function G (R) and excluded volume u of  model chains 
(n = 50) calculated according to (exact) eq. 9 and (approximate) eqs. 11 and 16 

R/~ G (R) a (R) a (R) 
eq. 9 eq. 16 eq. 11 

0.00 0.52479 0.53435 0.51043 
1.00 0.54959 0.55859 0.53607 
2,00 0.62105 0.62831 0.61015 
3.00 0,72735 0.73182 0.72072 
4.00 0.84448 0.84585 0.84257 
5.00 0.94311 0.94225 0.94457 
6.00 1.00458 1.00293 1.00712 
7.00 1,02942 1.02808 1.03140 
8.00 1.03071 1.03003 1,03167 
9.00 1.02246 1,02229 1,02266 

10.00 1.01338 1.01346 1.01325 
11,00 1.00684 1.00697 1.00664 
12.00 1.00306 1.00316 1.00291 
13.00 1.00122 1,00127 1.00113 
14.00 1.00043 1.00046 1.00039 
15,00 1.00014 1.00015 1.00012 
16.00 1.00004 1.00004 1.00003 

eq, 9 eq. 16 eq. l l  

u/ro 3 ,0.0 0.55 --0.9 
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differences can no longer be resolved for R > 6 r 0 on the normal scale an 
insert to Fig. 2 has been drawn for that range with an enlarged ordinate 
scale. For better understanding also the pair distribution function G (R) 
= exp ( - U/kT) for the pairs of  chains in its low density limit has been 
tabled and presented in the same way (Table 2, Fig. 3). Again it is seen that 
the agreement is very good: The deviations have a maximum order of  
magnitude of 0.01 in the range of low separations (R < 3 r0) and are of  the 

G(R) 

1.1 

i , O  

.9 

.8 

.7 , '  ,,' 

.4 
2 4 6 8 10 12 14 

R/r~ 

Fig. 3. Pair distribution function G(R) of freely rotating model chains as 
calculated by: exact eq. 9 - - ;  approximate eq. 11 . . . . . . . . . .  ; approximate 

eq. 16 

G[R) 

1 .06  

1 .05  

1 .04  

1 .03  

1 .02  

1.01 

1 .00 

.99 

.98 

order of  0.001 (maximum) for separations where G (R) exceeds unity (R 
> 6 r0). It should be noticed that over the whole range of separations the 
results obtained for (exact) eq. 9 are always between those of  
(approximate) eqs. 11 and 16. Table 2 also contains the volumes u 
excluded between the model chain molecules which may be calculated 
according to eq. 17 from G (R): u is found to be very close to zero for the 
approximate forms (columns 3 and 4), too. 

A second interesting point will be to check how close the repulsive 
(U+) and attractive (U_) components of  the exact form of U (evaluated 
by carrying out the integration over r separately for the ranges r = 0 to 
r = r 0 and r = r 0 to r = m,  as indicated in eqs. 12a and 12b) will be to 
Gaussian behaviour separately. As shown in Fig. 4 no significant 
deviations f rom linearity can be detected from a plot of  In U+/kT and 
In U /kT, respectively, vs.  R 2. According to the fact that the approximate 
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ln[U+/kTl,  ln[U_/kT) 
4 

3 

1 

0 

- 3  ,h N,x 

- 4  N NXN 

-5 

-6 

- 7  i i i ~ i ~ i i t i i ~ i i i i i 

50 100 150 200 

Fig. 4. Logarithmic plot of repulsive and attractive parts of U/kT, U+/kT, and 
U /kT vs. squared chain separation (R/ro)2: U+/kT (eq. 9)A; U /kT (eq. 9) V; 

U+/kT (eq. 15 a) ; U / k T  (eq. 15 b) 

form of U+/kT and U_/kT values given in eqs. 15 a and 15 b by definition 
is an exponential a plot of these In U+/kTor In U_/kTvalues vs. R 2 has to 
be linear at any rate and may serve as a standard straight line for 
comparison. 

A further point of interest is to analyse exact eq. 9 in the frame of  
approximate eq. 11. This can be conveniently done by plotting (exact) 
U/kT values multiplied by e bR2 vs. R 2 according to eq. 11 with fl = 0 

(U/kT) e bR2 = n 2 (b/~) 3/2 [ - b 7 + (2/3) b 2 ~ R 2] (11 a) 

As may be seen from Fig. 5 there are practically no significant deviations 
from the straight line required by eq. 11 a for R/ro > 10 while according to 
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the expectations (see comments at the end of the deduction section) 
deviations become feasible at R/r o > 12. Fortunately, however, as may be 
seen from Table 1, this range does not contribute very much to the overall 
interaction of the chains as [1 - G (R)] has come down to - 0.003 at R 
= 12r 0. Nevertheless, this plot offers elegant facilities of testing pair 
potentials of chain pairs and allows to draw conclusions on the nature and 
structure of the segment-segment interaction potential. 

CU/kTI expCb R 21 
2 

l 

0 

-1 

-2 

-3 

-4 • n , n , E * n , i , q , n * I , F , I , i , n , i , a , n , I , I , n , p r 1 

50 100 150 200 

1~2/r20 

Fig. 5. Plot of e bR2" U/kT vs. squared chain separation (R/ro)2: U/kT (eq. 9) O; 
U/kT (eq. 11) 

Needless to say that in all cases where linear regressions are carried out 
using the points resulting from the exact eq. 9 the parameters of the 
equations (s 2, r+ 2, r_ 2,/3,/3+,/3_, 7, 7+, 7- )  or their combinations are 
recovered with very good accuracy. This is particularly the case with plots 
of In U+/kT or in U_/kT vs. R 2. 

Concluding Remarks 
a) Achievements 

The foregoing chapters have shown that it is possible to derive an 
expression which is able to transform any pair potential of fairly short- 
ranged character operating between segments into the pair potential U 
describing the interaction between polymer chains along similar ideas as 
lout forward by Florv and Krigbaum. As this expression (eq. 9) may be too 
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complicated for practical purpose it is profitable to use the approximate 
forms developed afterwards (eqs. 11 and 16) which describe the segment- 
segment pair potential in terms of the volume excluded between segments 
/~ and the corresponding fourth moment 7 of the pair distribution of the 
segments due to e (r), only. fl as well as 7 may be separated into the 
contributions arising from repulsion (/3+, 7+) and attraction (fl_, 7-) 
between segments (/3 = fl+ + fl_, 7 = 7+ + 7-). The pairs (fl+, 7+) and 
/~-, 7-) define mean radii of repulsive (r+2= 7+/P+) and attractive 
( r2- = 7-//3-) interaction between segments which appear to be the most 
convenient parameters in describing the repulsive (U+) and attractive 
(U_) part of the overall potential between polymer chains (U = U+ + 
U_). The excellent accordance between the results obtained for a model 
potential with the exact eq. 9 on the one hand and the approximate forms 
based on the characterization ofe by//(/3+,/3_) and 7 (7+, 7-) only on the 
other leads to the conclusion that the knowledge of the exact form of e is 
dispensible. In other words this means that taking into account higher 
moments of the segment-segment pair distribution function (beyond 7, 7 +, 
7-  or 1.+2, r_Z, respectively) can give a marginal improvement of the 
accordance only and will not be worth the effort. 

b) Limitations 
While it thus has been shown that those difficulties inherent in the 

original Flory-Krigbaum treatment may be removed which arise from the 
fact that segment attraction and segment repulsion are absorbed into/~ 
without taking into account that they are effectuated at quite different 
segment-segment separations all the other objections which have been 
raised against the Flory-Krigbaum treatment still have to be borne in 
mind. So it is established that at the level of the second virial coefficients 
(or the excluded volume between polymer chains) the Flory~Krigbaum 
theory (in its Flory-Orofino version 8) does not agree with the results of the 
perturbation theory not even to the first order 3. Furthermore, severe 
criticism has been put forward against the Flory~Krigbaum theory by 
ourselves 9 at it fails to describe the pair distribution function G(R) 
correctly for athermal model chains (subject to repulsive segment-segment 
interaction only). It could be shown 9 that this shortcoming is caused by 
the assumption implicitely inherent in the Flory-Krigbaum treatment all 
segment-segment interactions between the two chains forming the chain 
pair are independent of each other. It may be removed, however, by 
substituting n, the number of real segments by a smaller quantity n' which 
gives the effective number of segments ("segment clusters") which may be 
considered to behave independently of each other as required by the Flory- 
Krigbaum theory. This procedure alters the pre-exponential factor of U 
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only without affecting the exponential. This is in agreement with the 
findings obtained for model chains 9. 

Although all the equations in this communication were originally 
derived without making any restriction as to the size (or even sign) of/~ and 
7 it is clear from the results obtained in 9 that a straightforward application 
of the equation to athermal chains must fail, too. However, the equations 
should work when n' and/~' (and ~' defined in an analogous fashion for 
segment clusters) are used instead of n,/?, and ~. As to the applicability of 
our equations to 0-systems (/3 = 0) it may be well argued that passing to the 
(unperturbed) 0-state together with many other types of perturbation also 
the perturbation in form of the interdependence of segment-segment 
interaction in the chain pair as it was observed for athermal chains will 
vanish so that our equations will be fully applicable under these 
conditions. A check of this argument will be given in a forthcoming 
paper 7. 
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